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Many important dynamical systems can be modeled one-dimensional non-linear oscillators
[1, 2]. For information on the properties of such systems, a variety of analytical methods
exist which can be used to construct approximations to the periodic solutions [3, 4].
However, when very accurate solutions are needed, the usual practical procedure is to
numerically integrate the equations of motion (EOM) [5, 6]. A major di$culty with
numerical techniques is that they can give rise to numerical instabilities; these are solutions
of the discrete equations, used for the numerical integration, that do not correspond to
any solution of the di!erential equation [5, 6]. For conservative oscillators, numerical
instabilities arise when the second order "nite-di!erence schemes do not possess a discrete
version of the "rst integral that exists for the EOM [7, 8]. This "rst integral, for conservative
systems, is the energy function [2].

In an earlier paper [8], it was shown how to construct a discrete energy function such that
the derived EOM provided an accurate discrete model of the original di!erential equation.
However, this paper [8] only derived the EOM for a one-dimensional oscillator for which
the potential energy was a quartic function of the dependent variable x, i.e.,
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) are constants. The main purpose of this Letter is to generalize the

results of Mickens [8] to the case where < (x) is a general polynomial function of x of Jth
degree, for arbitrary but "nite integer J.

A conservative one-dimensional oscillator satis"es the following conservation law [2]:
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where the constant is determined by the initial conditions, i.e., if x (0)"x(0) and x5 (0)"x5 (0);
then
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The EOM is obtained by taking the time-derivative of the energy function [2, 8],
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Let < (x) be a Jth degree polynomial, written as
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then equation (5) becomes
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In Mickens [8], it was shown that a discrete energy function should be constructed such
that it is a function only of x
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and the following choice is made for the discrete representation of the derivative:
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and /(h), the denominator function, is only required to have the property [5]

/ (h)"h#O(h2). (12)

The question now arises as what discrete representation should be used for the terms xj in
the potential energy function given in equation (6)? In the work to follow, only the
minimalist representation will be used, i.e., the discrete model for xj will consist of one term,
if j"even, or two terms, if j"odd. While other possibilities exist, this selection gives the
results for discrete EOM which are in agreement with the mathematical structure of the
original di!erential equations. First, note that for the constant and linear terms in <(x), the
discrete models are
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Likewise, using the result in equation (11) gives for the kinetic energy term the
representation
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Consider now the case where j0"even. A minimalist representation for xj is ( j"2m)

j"even:
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For j"odd, then the minimalist representation takes the form ( j"2m#1)
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The discrete model of the potential energy consequently can be written as
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where the symbol [xj]
k

is either the result from equations (15) or (16) depending as to
whether j"even or odd, with j*2.

Using equations (14) and (17), the following discrete energy function is obtained:
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Note that by the method of its construction the discrete energy function automatically
satis"es the condition given by equation (9). The discrete EOM is determined by applying
the operator D as de"ned as
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For the discrete kinetic energy, it follows that
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For the various other potential energy terms, the following results are obtained after
a certain amount of algebraic manipulations:
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It should be pointed out that the major bracketed expressions, respectively, on the
right-hand sides of equations (22) and (23), contain m and 2m#1 terms. This means that in
the limits: hP0, kPR, hk"t""xed, these expressions reduce, respectively, to the
correct values of xm~1 and xm.

An important observation is that the given results in equations (21)}(24), each term, on
the right-hand side, contains the factor (x
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)/2. As a consequence, the discrete

EOM can be obtained from the expression
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is the required EOM. Further, it clearly follows that H (x
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interchange (k#1)%(k!1). This discrete symmetry is equivalent to the corresponding
invariance under time-reversal, tP!t, for the original di!erential equation or its "rst
integral, the energy functions. Thus, the above method for constructing a discrete energy
function and its associated EOM mirrors exactly the properties of the di!erential equation.
Thus, the usual numerical instabilities are not expected to occur [5, 7, 8] in the
"nite-di!erence scheme given by equation (26).

Several comments are in order at this point. (1) For J*5, the "nite-di!erence scheme is
implicit. This means that in equation (26), x

k`1
satis"es an algebraic equation of at

least degree two. (2) For J)4, the above minimalist way of constructing the discrete
representations of the polynomial terms in the potential energy function leads to an EOM
in which x
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appears linearly in each term for which it occurs. This means that x
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explicitly solved for (by hand) and directly expressed in terms of x
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and x
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. (3) For
a particular nonlinear oscillator di!erential equation, a time step-size has to be selected
after the discrete model has been constructed. It should be kept in mind that the maximum
step-size is determined by physical considerations, i.e., it must be chosen such that its value
is &&small'' compared to the period of the oscillation. For most problems involving
one-dimensional oscillations, excellent estimates can be obtained for the period by use of
dimensional analysis [1, 9] or the method of harmonic balance [4].

Finally, to illustrate the method and to extend the work of Mickens [8], results are
presented for the quintet potential energy function. The energy function and EOM are
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The corresponding discrete representations are
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As expected, the scheme is implicit, with x
k`1

appearing as a square in the term having a
5
as

a coe$cient.
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